

In Situ Generation of Electrophilic Trifluoromethylthio Reagents for **Enantioselective Trifluoromethylthiolation of Oxindoles**

Xing-Li Zhu, † Jin-Hui Xu, † Dao-Juan Cheng, Li-Jiao Zhao, Xin-Yuan Liu, * and Bin Tan*

Department of Chemistry, South University of Science and Technology of China, Shenzhen 518055, P. R. China

Supporting Information

ABSTRACT: An organocatalytic asymmetric trifluoromethylthiolation reaction via in situ generation of active electrophilic trifluoromethylthio species involving trichloroisocyanuric acid and AgSCF₃ as a practical and easily handled electrophilic SCF₃ source for $C_{SP}^{\frac{3}{3}}$ –SCF₃ bond formation was developed. Reactions with this one-pot version strategy occurred in good yields and excellent stereoselectivities to

access enantiopure oxindoles bearing a SCF3-substituted quaternary chiral center. The straightforward process described here makes use of simple starting materials and proceeds under mild conditions, which will be useful in medicinal chemistry and diversity-oriented syntheses.

t is well-known that the extremely high lipophilicity and high electron-withdrawing character of the trifluoromethylthio (SCF₃) group may contribute to an increase in their transmembrane permeation, thus enhancing their bioavailability. Therefore, the introduction of a SCF3 group into small molecules is of considerable interest for the design and discovery of bioactive compounds,² such as JUK 0422, Tiflorex, and Toltrazuril (Figure 1).

Figure 1. Bioactive compounds bearing an SCF₃ group.

Accordingly, the development of efficient methods for the incorporation of the SCF3 group into organic compounds has drawn much attention from synthetic research groups. 1,2 Apart from earlier indirect strategies, 2c,3,4 a series of nucleophilic SCF₃-transfer reagents have been disclosed and employed for the direct construction of the trifluoromethylthio moiety into organic molecules.⁵ Recently, several elegant transformations for C_{sp3}-CF₃S bond formation have been reported involving newly developed electrophilic SCF3 reagents (Scheme 1, left). Shibata and co-workers developed a hypervalent iodonium ylide reagent (A) via in situ reduction of the trifluoromethanesulfonyl group to afford SCF3-substituted products.6 However, atom economy is very low, and metal is necessary for SCF3-transfer, indicating that organocatalytic transformation is difficult. Billard and co-workers reported that trifluoromethanesulfenamide (B) is an effective electrophilic SCF₃ source for the trifluoromethylthiolation of various substrates.⁷ Inspired by Togni's reagent, the Shen group described a novel trifluoromethylthiolated thioperoxy reagent (C) with interesting reactivity. However, the synthetic process

Scheme 1. General Synthetic Strategies for Direct Trifluoromethylthiolation Involving Electrophilic SCF₃ Reagents

appears to be not so easy to carry out, and its stability seems limited. N-(Trifluoromethylthio)phthalimide (D) appears to be the best reagent in terms of accessibility, reactivity, and enantioselective control.9 Even though these direct trifluoromethylthiolation reagents are shelf-stable and safe, a more critical issue is the fact that these SCF3 reagents must be prepared in advance. Because of these limitations and negative aspects, it is still highly desirable to develop a more practical and easily handled method for the generation of the SCF₃ source directly. Our strategy is to generate the electrophilic SCF₃ reagents in situ from simple and readily available starting materials, which would be trapped by nucleophile to access the desired SCF₃ product with good results (Scheme 1, right). If this approach is successful, this would be an excellent method without workup and isolation of SCF₃ reagents.

Oxindole compounds bearing a quaternary stereogenic center at the 3-position are a prominent substructure in numerous pharmaceuticals and bioactive compounds. 10 In this context, various synthetic strategies have been devised in recent years for the asymmetric synthesis of 3,3-disubstituted oxindole

Received: March 5, 2014 Published: April 3, 2014

Organic Letters Letter

derivatives. 11 If SCF₃ group would be combined with oxindole, it might result in further advances in the pharmacological applications. Therefore, an effective approach for the installation of a SCF₃ group into 3-position of oxindoles bearing a quaternary stereogenic center attracts our attention. As for the enantioselective catalytic direct trifluoromethylthiolation reaction, only a few examples have been developed very recently by Gade, Shen, and Rueping. 12 During the preparation of this manuscript, Rueping and co-workers reported the first catalytic asymmetric trifluoromethylthiolation of oxindoles using cinchona alkaloid catalyst and electrophilic SCF3 reagent D, 13 but the more practical approach is still desirable from the point of view of step-economy and potential industrial applications. Herein, we demonstrate an organocatalytic enantioselective trifluoromethylthiolation of oxindoles via in situ generation of electrophilic trifluoromethylthio reagents from trichloroisocyanuric acid (TCCA) and AgSCF3 in the presence of cinchona alkaloids as organocatalysts.

We initiated our studies by mixing the commercially available reagent TCCA and $AgSCF_3$ (3.3 equiv) in dichloromethane. After the mixture was stirred at 30 °C for 30 min, 1a and quinidine (I) were added (Table 1). To our delight, the reaction proceeded smoothly and afforded the desired product in 50% yield, albeit with poor enantioselectivity (8% ee),

Table 1. Screening Results of Reaction Conditions^a

Tuble 1. defecting results of reaction conditions					
C	Ph NO Boc 1a	CI + AgSCF ₃ + O	N N O 10 mol	% catalyst vent, rt n TFA	Ph SCF ₃
MeO O	Уон	HO N III		Meo Meo	OTMS
CF ₃ VII: (DHQD) ₂ PHAL VIII: (DHQD) ₂ PHAL VIII: (DHQD) ₂ PPHAL IX: (DHQD) ₂ PYR X: (DHQD) ₂ AQN					
entry	cat.	solvent	temp (°C)	$yield^b$ (%)	ee ^c (%)
1	I	DCM	30	50	8
1 2	I II	DCM DCM	30 30	50 33	8 -17
	_				
2	II	DCM	30	33	-17
2 3	II	DCM DCM	30 30	33 44	-17 49
2 3 4	II III IV	DCM DCM DCM	30 30 30	33 44 41	-17 49 6
2 3 4 5	II III IV V	DCM DCM DCM DCM	30 30 30 30	33 44 41 27	-17 49 6 8
2 3 4 5 6	II III IV V VI	DCM DCM DCM DCM DCM	30 30 30 30 30 30	33 44 41 27 40	-17 49 6 8 -7
2 3 4 5 6 7	II III IV V VI VII	DCM DCM DCM DCM DCM DCM	30 30 30 30 30 30 30	33 44 41 27 40 48	-17 49 6 8 -7 -66
2 3 4 5 6 7 8	II III IV V VI VII	DCM DCM DCM DCM DCM DCM DCM	30 30 30 30 30 30 30 30	33 44 41 27 40 48 38	-17 49 6 8 -7 -66 58
2 3 4 5 6 7 8 9	II III IV V VI VII VIII IX	DCM DCM DCM DCM DCM DCM DCM DCM	30 30 30 30 30 30 30 30 30	33 44 41 27 40 48 38 66	-17 49 6 8 -7 -66 58 70

"Reaction conditions: TCCA (0.06 mmol) and AgSCF₃ (0.2 mmol) were mixed in solvent (1.0 mL) and stirred for 30 min at 30 °C, and then a solution of 1a (0.1 mmol) and catalyst (0.01 mmol, 10 mol %) in solvent (1.0 mL) was added. After 12 h, the mixture was treated with trifluoroacetic acid (TFA). ^bIsolated yield. ^cDetermined by chiral HPLC analysis.

30

30

10

59

76

76

76

40

90

13

14

15

16

IX

ΙX

ΙX

Et₂O

THF

THE

CH₃CN

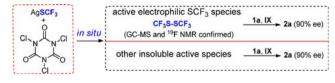
suggesting that the electrophilic trifluoromethylthio reagents were able to be in situ generated and trapped by 3-substituted oxindole (Table 1, entry 1). Considering the pioneering studies of Barbas¹⁴and others by using cinchona alkaloid^{16,17} bifunctional catalysts efficiently in functionalization of 3-substituted oxindole substrates, we turned our attention to catalysts II, V, and VI. The disappointed results (Table 1, entries 2, 5, and 6) indicated that the bifunctional catalysts with a hydrogen bond donor part have a negative effect on this transformation. In great contrast, when the hydroxyl group of quinidine was protected by a benzoyl group, the enantioselectivity was improved to moderate (49% ee. entry 3) and the TMSprotected quinidine did not have any improvement (Table 1, entry 4). These results possibly demonstrated that the aromatic interaction plays a crucial role in the control of enantioselectivity. Based on these results and previous reports, 14-16 we postulated the commercially available Sharpless ligands (VII, VIII, IX, and X) may be suitable catalysts for this attractive transformation. Indeed, the yield and enantioselectivity of the reaction increased when catalyst (DHQD)₂PYR IX (Table 1, entry 9) was used. Of the solvents tested, tetrahydrofuran (THF) proved optimal with respect to catalytic activity and selectivity (Table 1, entry 12). The best result (78% yield and 90% ee) in terms of selectivity and yield was obtained when the reaction was conducted at 0 °C (Table 1, entry 16).

Encouraged by these results, we expanded the substrate scope of the reaction by using a variety of substituted oxindoles with the in situ generated electrophilic SCF₃ reagent under the optimized reaction conditions. It was discovered that most of the reactions were performed with good enantioselectivities and yields (Scheme 2). It was shown that the position and the

Scheme 2. Scope of Trifluoromethylthiolation of Different Aryl Oxindoles

electronic property of the substituents for aromatic rings have a very limited effect on the stereoselectivity of the process. For example, various 3-aromatic oxindoles, bearing electron-donating groups (X = OMe, Me) or electron-withdrawing groups (X = F, Cl, Br, CF₃) on the aryl ring, reacted efficiently with electrophilic SCF₃ reagents to afford the corresponding products $2\mathbf{a}-\mathbf{j}$ in 61-95% yields with 83-95% ee. It is noteworthy that the substrates containing electron-withdrawing groups $(2\mathbf{f}-\mathbf{j})$ should be carried out at a temperature of -30 °C for better results.

Organic Letters Letter


Further exploration of the substrate scope was focused on the indolinone moiety (Scheme 3). Various substituents bearing

Scheme 3. Trifluoromethylthiolation of Oxindole with a Variety of Substituents on Indolinones

different electronic properties were tolerable, giving the corresponding products with high yields ranging from 50% to 93% and stereoselectivities (88–95% ee). The presence of Cl, Br, or F at the indolinone moiety is very important for drug discovery because halides are very reactive in many transition metal-catalyzed reactions, ¹⁷ which offer opportunities for further modifications at these positions.

Although we are sure the electrophilic SCF₃ reagents were involved in this transformation, the SCF3 intermediate needs to be further investigated for a better understanding of this reaction. To gain some insights into the real SCF3 reagents in current reaction, a series of control experiments were conducted. Initially, monitoring the reaction of TCCA (0.1 mmol) with AgSCF₃ (3.3 equiv) in CD₃CN (1 mL) at room temperature after 30 min by 19 F NMR spectroscopy and GC-MS revealed the formation of F₃CS-SCF₃ as the only active species during this process (characterized by the F₃CS-SCF₃ resonance at $\delta = -45.7 \text{ ppm}^{9a,18}$). In order to further confirm F₃CS-SCF₃ as the active SCF₃ reagent, the in situ generated F₃CS-SCF₃¹⁹ was bubbled with the help of argon gas into another solution of 1a and catalyst IX in THF at 0 °C. The desired product was isolated with consistent enantioselectivity (90% ee), further suggesting F₃CS-SCF₃ should be one of the reactive species. To the best of our knowledge, it is the first time that $F_3CS-SCF_3$ has acted as an electrophilic SCF_3 source for $C_{SP}{}^3-SCF_3$ bond formation. However, after removal of the F₃CS-SCF₃ active reagent and then the treatment of the resulting residue with 1a and catalyst IX, to our surprise, the expected product was also obtained with 90% ee, indicating the existence of other electrophilic SCF₃ species under the current system. The resulting residue was difficult to characterize because of its insolubility in some organic solvents. Although we were not able to confirm the active SCF3 intermediate at the present stage (Scheme 4), this in situ process provides a more convenient and practical approach for the synthesis of enantiopure SCF₃ substituted compounds. The absolute configuration of 2a was determined to be (S) by X-ray

Scheme 4. Investigation for Reactive Electrophilic SCF_3 Species

crystallographic analysis (Figure 2), and those of other trifluoromethylthio-containing compounds were assigned on the assumption of the same mechanism.

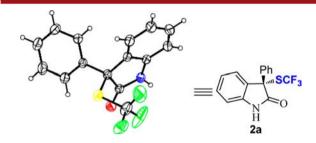


Figure 2. X-ray crystal structure of product 2a.

In conclusion, we have developed an asymmetric trifluoromethylthiolation reaction via in situ generation of active electrophilic trifluoromethylthio species involving TCCA and $AgSCF_3$ as a practical and easily handled electrophilic SCF_3 source for $C_{SP}{}^3-SCF_3$ bond formation through organocatalysis. This practical protocol provided a highly efficient method for the rapid synthesis of oxindoles bearing a SCF_3 -substituted quaternary chiral center with excellent enantioselectivity from simple and cheap starting materials without workup and isolation of SCF_3 reagents, which provide a particularly advantageous alternative to the current useful SCF_3 reagents. This convenient and practical strategy should facilitate the development of a wide range of trifluoromethylthiolation reactions catalyzed by organic and metal catalysts.

ASSOCIATED CONTENT

Supporting Information

General experimental procedures, analytic date for products, crystal data for **2a** (CIF), and copies of ¹H, ¹³C, and ¹⁹F NMR and HPLC spectra. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Authors

*E-mail: liuxy3@sustc.edu.cn. *E-mail: tanb@sustc.edu.cn.

Author Contributions

[†]X.L.Z. and J.H.X. contributed equally to this work

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We are thankful for the financial support from the National Natural Science Foundation of China (Nos. 21302088, 21302087), Shenzhen special funds for the development of biomedicine, internet, new energy, and new material industries (JCYJ20130401144532131, JCYJ20130401144532137), and

Organic Letters Letter

South University of Science and Technology of China (Talent Development Starting Fund from Shenzhen Government).

REFERENCES

- (1) For selected reviews, see: (a) Manteau, B.; Pazenok, S.; Vors, J. P.; Leroux, F. R. J. Fluorine Chem. 2010, 131, 140. (b) Leroux, F.; Jeschke, P.; Schlosser, M. Chem. Rev. 2005, 105, 827. (c) Hansch, C.; Leo, A.; Taft, R. W. Chem. Rev. 1991, 91, 165.
- (2) For selected reviews of trifluoromethylthiolation, see: (a) Tlili, A.; Billard, T. Angew. Chem., Int. Ed. 2013, 52, 6818. (b) Liu, H.; Jiang, X. Chem.—Asian J. 2013, 8, 2546. (c) Boiko, V. N. Beilstein J. Org. Chem. 2010, 6, 880.
- (3) For selected examples via halogen exchange, see: (a) Kremsner, J. M.; Rack, M.; Pilger, C.; Kappe, C. O. *Tetrahedron Lett.* **2009**, *50*, 3665. (b) Nodiff, E. A.; Lipschutz, S.; Craig, P. N.; Gordon, M. *J. Org. Chem.* **1960**, *25*, *60*.
- (4) For selected examples via trifluoromethylation of sulfur compounds, see: (a) Kieltsch, I.; Eisenberger, P.; Togni, A. Angew. Chem., Int. Ed. 2007, 46, 754. (b) Pooput, C.; Medebielle, M.; Dolbier, W. R., Jr. Org. Lett. 2004, 6, 301. (c) Large, S.; Roques, N.; Langlois, B. R. J. Org. Chem. 2000, 65, 8848. (d) Billard, T.; Roques, N.; Langlois, B. R. J. Org. Chem. 1999, 64, 3813. (e) Umemoto, T.; Ishihara, S. J. Am. Chem. Soc. 1993, 115, 2156.
- (5) (a) Weng, Z.; He, W.; Chen, C.; Lee, R.; Tan, D.; Lai, Z.; Kong, D.; Yuan, Y.; Huang, K. W. Angew. Chem., Int. Ed. 2013, 52, 1548. (b) Chen, C.; Chu, L.; Qing, F. L. J. Am. Chem. Soc. 2012, 134, 12454. (c) Chen, C.; Xie, Y.; Chu, L.; Wang, R. W.; Zhang, X.; Qing, F. L. Angew. Chem., Int. Ed. 2012, 51, 2492. (d) Zhang, C. P.; Vicic, D. A. J. Am. Chem. Soc. 2012, 134, 183. (e) Zhang, C. P.; Vicic, D. A. Chem.—Asian J. 2012, 7, 1756. (f) Teverovskiy, G.; Surry, D. S.; Buchwald, S. L. Angew. Chem., Int. Ed. 2011, 50, 7312.
- (6) Yang, Y.-D.; Azuma, A.; Tokunaga, E.; Yamasaki, M.; Shiro, M.; Shibata, N. J. Am. Chem. Soc. 2013, 135, 8782.
- (7) (a) Alazet, S.; Zimmer, L.; Billard, T. Angew. Chem., Int. Ed. 2013, 52, 10814. (b) Tlili, A.; Billard, T. Angew. Chem., Int. Ed. 2013, 52, 6818. (c) Liu, J.; Chu, L.; Qing, F.-L. Org. Lett. 2013, 15, 894. (d) Baert, F.; Colomb, J.; Billard, T. Angew. Chem., Int. Ed. 2012, 51, 10382. (e) Ferry, A.; Billard, T.; Bacque, E.; Langlois, B. R. J. Fluorine Chem. 2012, 134, 160. (f) Yang, Y.; Jiang, X.; Qing, F.-L. J. Org. Chem. 2012, 77, 7538. (g) Ferry, A.; Billard, T.; Langlois, B. R.; Bacque, E. Angew. Chem., Int. Ed. 2009, 48, 8551.
- (8) (a) Shao, X.; Wang, X.; Yang, T.; Lu, L.; Shen, Q. Angew. Chem., Int. Ed. 2013, 52, 3457. (b) Vinogradova, E. V.; Müller, P.; Buchwald, S. L. Angew. Chem., Int. Ed. 2014, 53, 3125.
- (9) (a) Pluta, R.; Nikolaienko, P.; Rueping, M. Angew. Chem., Int. Ed. **2014**, 53, 1650. (b) Pluta, R.; Nikolaienko, P.; Rueping, M. Angew. Chem., Int. Ed. **2013**, 52, 12856. (c) Munavalli, S.; Rohrbaugh, D. K.; Rossman, D. I.; Berg, F. J.; Wagner, G. W.; Durst, H. D. Synth. Commun. **2000**, 30, 2847.
- (10) For reviews, see: (a) Trost, B. M.; Brennan, M. K. Synthesis 2009, 3003. (b) Galliford, C. V.; Scheidt, K. A. Angew. Chem., Int. Ed. 2007, 46, 8748. (c) Dounay, A. B.; Overman, L. E. Chem. Rev. 2003, 103, 2945. (d) Marti, C.; Carreira, E. M. Eur. J. Org. Chem. 2003, 2209. (11) For reviews, see: (a) Klein, J. E. M. N.; Taylor, R. J. K. Eur. J. Org. Chem. 2011, 6821. (b) Zhou, F.; Liu, Y. L.; Zhou, J. Adv. Synth. Catal. 2010, 352, 1381. For selected examples, see: (c) Ohmatsu, K.; Ando, Y.; Ooi, T. J. Am. Chem. Soc. 2013, 135, 18706. (d) Zhong, F.; Dou, X.; Han, X.; Yao, W.; Zhu, Q.; Meng, Y.; Lu, Y. Angew. Chem., Int. Ed. 2013, 52, 943. (e) Wang, C.; Yang, X.; Enders, D. Chem.—Eur. J. 2012, 18, 4832. (f) Zheng, W.; Zhang, Z.; Kaplan, M. J.; Antilla, J. C. J. Am. Chem. Soc. 2011, 133, 3339. (g) Zhang, Z.; Zheng, W.; Antilla, J. C. Angew. Chem., Int. Ed. 2011, 50, 1135. (h) Bui, T.; Hernandez-Torres, G.; Milite, C.; Barbas, C. F., III. Org. Lett. 2010, 12, 5696. (i) He, R.; Ding, C.; Maruoka, K. Angew. Chem., Int. Ed. 2009, 48, 4559. (j) He, R.; Shirakawa, S.; Maruoka, K. J. Am. Chem. Soc. 2009, 131, 16620.
- (12) (a) Deng, Q.-H.; Rettenmeier, C.; Wadepohl, H.; Gade, L. H. Chem.—Eur. J. 2014, 20, 93. (b) Wang, X.; Yang, T.; Cheng, X.; Shen, Q. Angew. Chem., Int. Ed. 2013, 52, 12860. (c) Bootwicha, T.; Liu, X.;

Pluta, R.; Atodiresei, I.; Rueping, M. Angew. Chem., Int. Ed. 2013, 52, 12856

- (13) Rueping, M.; Liu, X.; Bootwicha, T.; Plutaa, R.; Merkensb, C. Chem. Commun. **2014**, *50*, 2508.
- (14) (a) Bui, T.; Candeias, N. R.; Barbas, C. F., III. *J. Am. Chem. Soc.* **2010**, 132, 5574. (b) Bui, T.; Syed, S.; Barbas, C. F., III. *J. Am. Chem. Soc.* **2009**, 131, 8758.
- (15) Tian, S.; Chen, Y.; Hang, J.; Tang, L.; McDaid, P.; Deng, L. Acc. Chem. Res. **2004**, *37*, 621.
- (16) For examples, see: (a) McCooey, S. H.; Connon, S. J. Angew. Chem., Int. Ed. 2005, 44, 6367. (b) Ye, J.; Dixon, D. J.; Hynes, P. S. Chem. Commun. 2005, 4481. (c) Vakulya, B.; Varga, S.; Csámpai, A.; Soós, T. Org. Lett. 2005, 7, 1967. (d) Marcelli, T.; van der Haas, R. N. S.; van Maarseveen, J. H.; Hiemstra, H. Angew. Chem., Int. Ed. 2006, 45, 929. (e) Tillman, A. L.; Ye, J.; Dixon, D. J. Chem. Commun. 2006, 1191. (f) Mattson, A. E.; Zuhl, A. M.; Reynolds, T. E.; Scheidt, K. A. J. Am. Chem. Soc. 2006, 128, 4932. (g) Song, J.; Wang, Y.; Deng, L. J. Am. Chem. Soc. 2006, 128, 6048. (h) Malerich, J. P.; Hagihara, K.; Rawal, V. H. J. Am. Chem. Soc. 2008, 130, 14416. (i) Liu, Y.; Sun, B.; Wang, B.; Wakem, M.; Deng, L. J. Am. Chem. Soc. 2009, 131, 418. (j) Singh, R. P.; Foxman, B. M.; Deng, L. J. Am. Chem. Soc. 2010, 132, 9558. (k) Tan, B.; Lu, Y.; Zeng, X.; Chua, P. J.; Zhong, G. Org. Lett. 2010, 12, 2682. (1) Wu, Y.; Singh, R. P.; Deng, L. J. Am. Chem. Soc. 2011, 133, 12458. (m) Yang, K. S.; Nibbs, A. E.; Turkmen, Y. E.; Rawal, V. H. J. Am. Chem. Soc. 2013, 135, 16050. (n) Qian, H.; Yu, X.; Zhang, J.; Sun, J. J. Am. Chem. Soc. 2013, 135, 18020.
- (17) Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457-2483.
- (18) Tran, L. D.; Popov, I.; Daugulis, O. J. Am. Chem. Soc. 2012, 134, 18237.
- (19) The boiling point of $F_3CS-SCF_3$ is only 34 °C; it is very easy to bubble it into another solution of 1a and catalyst in THF. Although this reagent is commercially available, it is very expensive and difficult to handle. Furthermore, in China, a special license is needed to purchase it from a chemical company.
- (20) The Wang group reported a radical aryltrifluoromethylation involving F₃CS-SCF₃ as an intermediate to produce SCF₃-containing oxindoles. Yin, F.; Wang, X.-S. *Org. Lett.* **2014**, *16*, 1128.